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It is revealed in this paper that consideration of non-uniformity in the particle size and thickness of the surface insulation layer is 

essentially important to accurately evaluate the macroscopic permeability of soft magnetic composite (SMC). It is shown that finite 

element method applied to a real picture image of SMC gives good approximation to its measured value while the homogenization 

method without considering the non-uniformity has significant errors. Moreover to evaluate the SMC permeability a simple magnetic-

circuit method in which the non-uniformity is taken into consideration is proposed. 
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I. INTRODUCTION 

OFT MAGNETIC COMPOSITE (SMC) which consists of 

magnetic particles coated with insulation layer has been 

used in electric machines and devices such as motors and 

inductors because of its cost effectiveness, low eddy current 

loss and flexibility for 3-D modeling. The macroscopic 

magnetic properties of SMC have been evaluated by using 

homogenization approaches such as Ollendorff’s formula [1], 

magnetic circuit method [2] and a homogenization method 

using finite element (FE) analysis [3]. Ollendorff’s formula is 

given by  
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where 𝜇̅𝑟 ,, 𝜇𝑟  and N are the macroscopic relative 

permeability of SMC, volume fraction and relative 

permeability of magnetic particles, coefficient of 

demagnetization field. It has been shown that the macroscopic 

permeability of SMC obtained by the homogenization method 

based on FE analysis agrees well with those computed by 

Ollendorff’s formula and magnetic circuit if magnetic 

saturation is negligible. However, it has been shown in [4] that 

the permeability evaluated by these methods is far smaller 

than the measured value. To make the evaluated permeability 

close to the measured value, the volume fraction is assumed to 

be greater than the actual value in [4]. Let us consider the 

SMC whose cross-sectional picture is shown in Fig.1. The 

measured volume fraction is 0.866 and macroscopic relative 

permeability is 45. If we compute the particle permeability 𝜇𝑟 

by substituting these values into (1), the resutant value is 

negative. Indeed, the macroscopic permeability 𝜇̅𝑟  evaluated 

from (1) cannot be greater than 20.4 for any particle 

permeability.  

In this paper, the reason of above discrepancies will be 

revealed by applying 2-D FE analysis to the actual cross-

sectional picture of SMC. It will be shown that the non-

uniformity in the particle size and thickness of insulation layer 

is essentially important to accurately evaluate the macroscopic  

 
Fig. 1.  Cross-sectional picture (70.0 x 52.4m) of a SMC whose the 

measured volume fraction is 0.866, the measured macroscopic relative 

permeability is 45. Red lines are the magnetic fluxes obtained by solving (2). 

 

TABLE I 

COMPARISON WITH THE MACROSCOPIC RELATIVE PERMEABILITY OF THE SMC 

Method Macroscopic relative permeability 

Ollendorff (N=1/3) 17 

FE analysis 39 

Measured 45 

 

permeability. Although the real cross-section of SMC is 

analyzed by FE analysis in [5], importance of non-uniformity 

is not stressed. Moreover to evaluate the SMC permeability, 

we propose a simple magnetic-circuit method in which the 

non-uniformity is taken into consideration. 

II. FINITE ELEMENT APPLIED TO REAL IMAGE 

The 2-D FE analysis is applied to the real cross-sectional 

image of SMC shown in Fig. 1. We analyze the magnetic field 

without electric current, which is governed by  
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where , A are the permeability and vector potential. The 

relative permeability 𝜇𝑟 of magnetic particles is assumed to be 

100. We assume the Dirichlet and Neumann boundary 

conditions on the side and top-bottom boundaries of the 

analysis region, respectively. 

S 



The magnetic flux lines obtained by solving (2), shown in 

Fig. 1, are obviously non-uniform because of highly non-

uniform particle sizes and insulation thickness. Moreover 

there are many nearly contact points through which magnetic 

fluxes easily penetrate into magnetic particles. Table I 

compares the macroscopic relative permeability of the SMC 

calculated by (1) in which non-uniformity is not considered 

with that obtained in the above-mentioned analysis. From 

these results, it is concluded that non-uniformity gives 

significant contribution to the large permeability of SMC.  

III. MAGNETIC CIRCUIT CONSIDERING NON-UNIFORMITY 

We want to establish a simple method to evaluate the 

permeability of SMC without analyzing the real picture. To do 

so, we employ the magnetic circuit method. First, to test 

validity of this method, we will compare the macroscopic 

permeability computed by this method without considering 

non-uniformity with that computed from (1). Then we will 

introduce non-uniformity into the present method. 

We consider a magnetic circuit with lattice structure shown 

in Fig.2. The magnetic resistance includes those for magnetic 

particle and insulation layer, that is, R=Rmag+Rlayer. The 

magnetic circuit contains m
2
 unit domains as shown in Fig. 2. 

The Dirichlet and Neumann boundary conditions are imposed 

on the side and top-bottom boundaries of the magnetic circuit, 

respectively. From Kirchhoff’s first law for magnetic flux Φ, 

the circuit equations for magnetomotive force Fi can be 

obtained. By solving the circuit equations, the macroscopic 

relative permeability of SMC is computed from [2] 
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where S and l are the considered area in x-z plane and length 

of the whole circuit in y direction, and ∆𝐹 = 𝐹𝑚2+1 − 𝐹0 

denotes the magnetomotive force imposed to the magnetic 

circuit. 

To test the validity of the considered magnetic circuit, we 

compare 𝜇̅𝑟  obtained from (3) with that calculated by (1) in 

which N=1/2 is assumed. In the analysis, we assume the 

following sizes: dx=dy=30.0m, x=y=1.118m, so that the 

volume fraction is given by dxdy/((dx+2x)(dy+2y))=0.866. 

The relative permeability 𝜇𝑟 of magnetic particles is assumed 

to be 100 and m=100. The magnetic resistances are given by 

Rmag=dx/(r0dydz), Rlayer= x/(0dydz), where dz=dx=dy. The 

resultant values of macroscopic relative permeability 

calculated by (1) and (3) are 12.23, 11.83, which are in good 

agreement.  

Next we consider the non-uniformity in the particle size and 

thickness of the insulation layer in the present method. To do 

so we introduce the distributed layer thickness whose 

probability density function, obeying logarithm normal 

distribution LN(1.118m, 𝜎2), is shown in Fig. 3. To consider 

the distributed particle size in the magnetic circuit, we 

introduce the probabilistic number of adjacent particles 

because the number of adjacent particles depends on the 

particle size as shown in Fig.1. In actual computation, we  

 
Fig. 2.  Magnetic circuit of the m2 unit domains 

 

 
Fig. 3.  Distribution of layer thickness 

 

TABLE II 

RESULTS COMPUTED BY THE PRESENT METHOD 

 Macroscopic relative permeability 

 𝜎2=1.0 𝜎2=5.0 𝜎2=10.0 

Pth=0.4 18.74 25.08 29.41 

Pth =0.3 24.65 33.47 39.41 

Pth =0.2 30.24 41.50 49.03 

 

assume eight neighboring particles for each particle, and 

connectivity in flux between two neighboring particles are 

determined by generating uniform random numbers 0 ≤ 𝑃 ≤
1 so that the magnetic resistance between the two adjacent 

particles are infinite if P<Pth.  

Table II shows the results from which it is found that the 

macroscopic relative permeability obtained by the present 

method increases with 𝜎2. Also when Pth becomes lower, the 

macroscopic relative permeability obtained by the present 

method also increases. In particular, when 𝜎2 =5.0, 10.0, 

Pth=0.2, the computed results are close to the measured value. 

In the long version, we will discuss how to determine 

appropriate values of 𝜎2 and Pth.  
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